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Abstract

This paper focuses on (an interpretation of) the Enkratic principle of rationality, ac-
cording to which rationality requires that if an agent sincerely and with conviction
believes she ought to X, then X-ing is a goal in her plan. We analyze the logical
structure of Enkrasia and its implications for deontic logic. To do so, we elaborate on
the distinction between basic and derived oughts, and provide a multi-modal neigh-
borhood logic with three characteristic operators: a non-normal operator for basic
oughts, a non-normal operator for goals in plans, and a normal operator for derived
oughts. We prove two completeness theorems for the resulting logic, and provide a
dynamic extension of the logic by means of product updates. We illustrate how this
setting informs deontic logic by considering issues related to the filtering of inconsis-
tent oughts, the restricted validity of deontic closure, and the stability of oughts and
goals under dynamics.

Keywords: Enkrasia, Basic Oughts, Derived Oughts, Goals, Deontic Logic,
Neighborhood Logic, Dynamic Logic.

1 Introduction

Suppose I believe sincerely and with conviction that today I ought to repay
my friend Ann the 10 euro that she lent me. But I do not make any plan for
repaying my debt: Instead, I arrange to spend my entire day at the local spa
enjoying aromatherapy treatments. This seems wrong.
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Enkrasia is the principle of rationality that rules out the above situation.
The principle plays a central role within the domain of practical rationality,
and has recently been receiving considerable attention in practical philosophy. 1

In its most general formulation, Enkrasia is the principle according to which
rationality requires that if an agent sincerely and with conviction believes she
ought to X, then she intends to X. There might be several ways in which such
an intention to X is to be understood. Inspired by Bratman (1987), here we
consider the agent’s intention to X as indicating that the agent is committed
to achieve X, and thus has, in some sense, a plan for X-ing. When this is
the case, we say that X-ing is a goal in the agent’s plan. Combining these
aspects, we can understand Enkrasia as the principle of rationality requiring
that if an agent sincerely and with conviction believes she ought to X, then
X-ing is a goal in the agent’s plan. Such an interpretation of Enkrasia was first
suggested by Horty (2015), and constitutes the starting point of the present
paper. Notably, this formulation does not refer to the agent’s intention. In fact,
we drop the term “intention” altogether from our analysis to avoid confusion.

This paper pursues two aims. Firstly, we want to analyze the logical struc-
ture of Enkrasia in light of the interpretation just described. This is, to the best
of our knowledge, a largely novel project within the literature. Much existing
work in modal logic deals with various aspects of practical rationality start-
ing from Cohen and Levesque’s seminal 1990 paper. The framework presented
here aims to complement this literature by explicitly addressing Enkrasia. The
principle, in fact, bears some non-trivial conceptual and formal implications —
which might be of interest to the practical philosopher as well as the modal
logician. This leads to the second aim of the paper. We want to address the
repercussions that Enkrasia has for deontic logic. To this end, we elaborate
on the distinction between so-called “basic oughts” and “derived oughts”, and
show how this distinction is especially meaningful in the context of Enkrasia.
Moreover, we address issues related to the filtering of inconsistent oughts, the
restricted validity of deontic closure, and the stability of oughts and goals under
dynamics.

In pursuit of these two aims, we provide a multi-modal neighborhood logic
for Enkrasia. The logic has three characteristic operators: A non-normal oper-
ator for basic oughts, a non-normal operator for goals in plans, and a normal
operator for derived oughts. We prove two completeness theorems for the re-
sulting logic, and provide a dynamic extension of the logic by means of product
updates.

The paper proceeds along the following general lines. First, we clarify its
philosophical foundations by introducing Enkrasia’s main characteristics and
its connection with two principles of rationality requiring goals in plans to be
consistent (Section 2). We then introduce three challenges that illustrate the
relevance of Enkrasia for deontic logic (Section 3). After discussing some core

1 See the works of Broome (2013); Kolodny (2005); Shpall (2013); Horty (2015). For a
complementary account of the relation between oughts and plans, see Gibbard (2008).
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features and design choices of our approach (Section 4), we present a static
logic for Enkrasia (Sections 5–7). Finally, we provide a dynamic extension
of the logic (Section 8). This paper fits in with a larger project aimed at
investigating the logic of oughts in the context of practical rationality. We
hence conclude by discussing some related logic literature, and considering
possible future extensions.

2 Enkrasia and the Consistency of Goals

The starting point of this paper is the Enkratic principle of rationality, in the
following interpretation:

enkrasia. If an agent believes she ought to X, then X-ing is a goal in the
agent’s plan.

Such an interpretation is inspired by Horty (2015). This section introduces
enkrasia’s main components and emphasizes its connection with two princi-
ples of rationality governing goals in plans. Let us stress before continuing that
the aim pursued here is not to engage in a direct defense of enkrasia (for this,
the interested reader can consult Broome, 2013 and Horty, 2015). Rather, this
section is meant to lay the groundwork for our formal analysis of enkrasia’s
structure and of its position within the domain of practical rationality.

Let us begin with the oughts to which enkrasia applies — where “ought”
is used as a noun, roughly meaning “obligation”. It should be stressed that
enkrasia does not take as antecedents all possible oughts. For one, enkrasia
applies only to those oughts that are believed by the agent — in fact, this
straightforwardly follows from the above formulation of the principle. However,
further constraints are in place. We take inspiration from Broome (2013), and
require oughts that fall within the scope of enkrasia to have at least two
further properties: They are normative and ascribed to the agent herself.
These constraints are better illustrated via examples, so let us briefly consider
them in turn.

One constraint limits the scope of enkrasia to normative oughts. These
are the oughts that have to do, for instance, with morality, law or prudence. “I
ought to repay my friend (as morality demands me to)” is an illustrative exam-
ple of a normative ought. Contrariwise, examples of non-normative oughts are
often to be found where oughts are used to express what is typically expected
to be the case (see Yalcin, 2016), as in “I ought to have heard from the landing
module ten minutes ago” (Broome, 2013, p.9). It would make little sense to
say that hearing from the landing module is something I plan for. Indeed,
enkrasia does not apply there.

The other constraint demands that the agent ascribes the oughts to herself.
We can put this point in various ways: We can say this constraint demands that
the agent believes the ought is required of her, that she recognizes it as her job
to bring about the ought, or that she believes she is the “owner” of the ought
(cf. Broome, 2013, p. 22). Examples of oughts ascribed to the agent herself
are “I ought to get a sun hat” (Broome, 2013, p.12), and “I ought to see to it
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that the kids are alright”. An ought that is not ascribed to the agent herself is
“I ought to get a punishment”, in a (natural) context where it is not on me to
ensure that I receive this punishment. As long as getting a punishment is not
my job, it would be incorrect to say that I fall short of rationality if getting
punished is not a goal in my plan. This is why we demand enkrasia to apply
only to oughts that are ascribed to the agent herself.

We have just identified a way in which enkrasia is constrained: It applies
only to the oughts that enjoy the three properties above, namely, that are
believed by the agent, normative, and ascribed to the agent herself. In our
formal framework, we will implicitly assume that the oughts of enkrasia are
of that kind. This is not to mean, however, that all oughts with those properties
will correspond, via enkrasia, to goals in the agent’s plans. In fact, in the
next section, we will suggest that enkrasia needs to be further weakened.

So much for oughts. Let us now turn to another crucial component of
enkrasia: Goals in plans. Drawing from Bratman (1987), when saying that
X-ing is a goal in the agent’s plan, we mean that the agent is committed to
achieve X, which includes figuring out (to an appropriate degree) how to do
so. To put it more succinctly, we mean that the agent has a plan for X-ing.
For instance, repaying my friend is a goal in my plan only if I am committed
to do so: I have a plan for repaying my friend which, minimally, for me rules
out all the options (such as spending all my money, leaving the country, etc.)
that I believe would make it impossible to achieve my goal. Those options
become, given my commitment to repay my friend, no longer admissible. In
this context, goals in plans di↵er from mere desires or wishes, which lack such
a dimension of commitment (Thomason, 2000; Cohen and Levesque, 1990).
Those notions should be kept apart here.

Furthermore, goals in plans are future-directed: The most natural read-
ing of “X-ing is a goal” is the one in which X is something that still has to
happen (see Bratman, 1987, p.4). Indeed, when talking about having a goal,
we generally refer to something we are committed to do in the future (by the
end of today, tomorrow, next month, etc.). In line with these considerations,
in this paper we will assume X to include an element of futurity.

The literature imposes constraints on goals in plans. For instance, Broome
suggests a property that — paraphrased in our own terms — amounts to re-
quiring that the agent has the ability, via forming the goal to X, to have an
impact on X-ing (Broome, 2013, pp.162-163). Although we find such a sug-
gestion worth further (formal) analysis, we do not follow this direction here.
Rather, we focus our attention on two minimal principles of rationality govern-
ing goals in plans. These principles of rationality require goals in plans to be
consistent, in the following two senses of the term:

internal consistency. If X-ing, Y -ing, ... are goals in an agent’s plans,
then it is logically consistent to X and Y and ... .

strong consistency. If X-ing, Y -ing, ... are goals in an agent’s plans,
then the agent believes it is possible to X and Y and ... .
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Both principles reflect the idea that it should be possible for goals in plans
to be successfully achieved: internal consistency demands that goals in
plans be jointly logically consistent, while strong consistency requires that
goals in plans be jointly consistent with respect to the agent’s beliefs. Their
motivation is ultimately rooted in the dimension of commitment that goals in
plans have: I could not truly be committed to repaying my friend and, at the
same time, be committed to spending all my money to see the movies, while
believing that these two things are incompatible — let alone jointly logically
impossible (see Bratman, 1987; Cohen and Levesque, 1990; Horty, 2015).

Straightforward consequences of the above consistency principles are that if
X-ing is a goal in a plan, then not X-ing is not a goal in a plan (from internal
consistency), and that if X-ing is a goal in a plan, then the agent believes it
is possible to X (from strong consistency). That is to say, goals in plans
should neither be contradictory, nor believed to be impossible to achieve.

This is perhaps the right moment to mention some aspects of the current
debate surrounding enkrasia — and the principles of rationality, more gen-
erally — that we will not address in this paper. The first has to do with
the debate on whether principles of rationality are of wide or narrow scope.
Consider enkrasia. Under the narrow scope, if the agent believes she ought
to X, rationality requires that X-ing is a goal in the agent’s plan. Under the
wide scope, on the other hand, rationality requires that if the agent believes
she ought to X, then X-ing is a goal in her plan. The two readings lead to
di↵erent pictures of rationality. Under the narrow scope reading, rationality
requires a particular attitude of the agent. Under the wide scope, rationality
only requires a particular relation between the agent’s attitudes, typically leav-
ing the rational agent leeway to either adopt X-ing as a goal in her plan or to
revise her belief that she ought to X. 2 Since the focus of the present paper is
not on operators akin to “rationality requires that”, we take our contribution
to be largely independent of the question whether enkrasia is a narrow or
wide scope principle of rationality.

A second issue to which this paper does not contribute is whether principles
of rationality are synchronic or diachronic. Consider again enkrasia, now
enriched with time-indexes: If the agent believes at t that she ought to X,
then X-ing is a goal in the agent’s plan at t0. Diachronically, t precedes t0,
while synchronically, t and t0 refer to the same time. Under the diachronic
reading, believed oughts can be thought of generating corresponding goals,
while under the synchronic interpretation, believed oughts and goals coexist at
the same time. For reasons of simplicity, we follow Broome (2013) and focus
on the synchronic interpretation of enkrasia. We hold, however, that both
interpretations have a certain appeal, especially from a logical perspective.

2 See, among others, Broome (2013); Kolodny (2005) and Shpall (2013). Broome (2013)
defends the wide scope reading, and Kolodny (2005) the narrow scope one, while Shpall
(2013) proposes a “conciliatory view” between the two camps of the debate.
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3 Three Challenges

We now introduce three challenges surrounding enkrasia that are apt to il-
lustrate the relevance such a principle holds for deontic logic.

3.1 Challenge I: From Inconsistent Oughts to Consistent Goals

There is a potential tension between enkrasia and the principles of internal
and strong consistency for goals in plans. Consider the following:

Example 3.1 Suppose I believe I ought to repay 10 euro to my friend Ann. I
also believe I ought to go to the movies with Barbara (I have promised her so).
However, money is scarce, and I believe it is impossible to do both.

It is safe to suppose that the oughts in Example 3.1 are of the kind to which
enkrasia may apply (i.e., they enjoy all three properties introduced in Section
2). Now if enkrasia were in fact applied to those oughts, I would need to plan
for both repaying the money to Ann and for going to the movies with Barbara
— ending up with two goals I believe to be inconsistent, and so violating
strong consistency in this specific case.

How to solve this tension? One way is to assume oughts are always con-
sistent, both from a logical viewpoint and from the perspective of the agent’s
beliefs (see Broome, 2013). This assumption certainly solves the problem. But
consider again the example above. Especially when oughts originate from dif-
ferent sources, it seems a viable possibility that these may end up being jointly
inconsistent.

In what follows, we investigate another strategy to solve the tension between
enkrasia, internal and strong consistency. In a nutshell, this strategy
is not to rule out the possibility of inconsistent oughts, nor to abandon the
consistency principles for goals in plans, but rather to weaken enkrasia. The
rationale for maintaining both internal and strong consistency is rather
pragmatic: In the face of a normative conflict about how to act, the least I can
do is to assure that whatever I commit to is achievable.

Allowing for oughts, but not goals, to be inconsistent has several major
consequences. Firstly, since oughts are possibly inconsistent but goals are not,
it straightforwardly follows that not all oughts can correspond to goals in plans.
In fact, this makes enkrasia a logically invalid principle. Secondly, it is natural
to ask if not all, then which oughts do correspond to goals in plans. The
challenge consists then in formally determining how oughts can be filtered out,
in order to move from inconsistent oughts to consistent goals.

3.2 Challenge II: Basic Oughts and Derived Oughts

The second challenge revolves around a family of logical principles and inference
rules that goes under the name of “deontic closure under implication” — for
short: deontic closure. A longstanding tradition in deontic logic rejects the
validity of deontic closure, arguing that it leads to unacceptable conclusions.
An example is given by Ross’ Paradox (Ross, 1941; Hilpinen and McNamara,
2013): Suppose I ought to mail the letter ; now, since mailing the letter logically
implies mailing the letter or burning it, deontic closure would imply that I ought
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to mail the letter or burn it — which is intuitively implausible.
The issue is that even if we accept that deontic closure is in fact problematic

and should not be generally valid, an outright rejection of deontic closure would
not constitute an adequate solution. For one, it would lead us to miss out also
on deontic inferences that are intuitively plausible.

To see this, consider the following example, which we owe to Horty (2015).
For this example, let us forget about my promise to go to the movies with
Barbara, and simply assume that going to the movies is something I like:

Example 3.2 Suppose that I ought to repay Ann 10 euro. Now suppose that
I would also like to go to the movies, but I do not have a lot of money. In fact,
I believe that unless I refrain from going to the movies it is impossible to repay
Ann. So, I conclude, I ought not go to the movies.

Such a conclusion strikes us as impeccable. Following von Wright (1963), we
call the above piece of reasoning practical inference, and schematically represent
it as:

(P1) I ought to repay Ann

(P2) Necessarily, repaying Ann implies not going to the movies

(C) Therefore, I ought not go to the movies

Practical inference is the cornerstone of instrumental reasoning. 3 Yet, practical
inference — just as Ross’ Paradox— is a variant of deontic closure (specifically,
deontic closure under necessary implication). An outright rejection of deontic
closure would have the e↵ect of also blocking the above derivation.

The challenge then takes the following shape: Even assuming that deontic
closure is not generally valid, a deontic logic should be “thick” enough to license
crucial deontic inferences — including those instances of deontic closure that
are valid. In the remainder of this section, we explore the boundaries between
valid and invalid instances of deontic closure, and show that enkrasia provides
us with the conceptual tools to do so.

All we need is to fix one set of oughts to start with. This set functions as
input for the agent’s deliberation. We do not impose any requirements on this
set other than demanding that all oughts enjoy the three properties described
in Section 2, i.e., being believed by the agent, normative, and ascribed to the
agent herself. It follows, hence, that these are oughts to which enkrasia may
apply. We call the oughts in this set basic oughts. Apart from what we just
said, there is nothing intrinsically special about these. 4 We do not assume
basic oughts to have any particular surface grammar, nor do we assume they

3 Typically (P2) expresses a practical necessity, which might vary with the circumstances or
the agent’s beliefs thereof, cf. von Wright (1963, p.161).
4 Various interpretations can be imposed on the set of basic oughts. Horty (2015) thinks
of basic oughts as those oughts directly generated by normative requirements. Alternatively,
one may think of basic oughts as those explicitly believed by the agent.These interpretations
are compatible with our characterization of basic oughts. An alternative characterization of
basic oughts is provided by Nair (2014).
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share any further commonalities. In fact, we even admit the possibility that
basic oughts are jointly inconsistent. 5 Once the set of basic oughts is fixed,
we call derived oughts all those oughts that are implied by basic oughts.

The distinction between basic and derived oughts is crucially meaningful in
relation to enkrasia, and helps us to discern valid from invalid instances of
deontic closure. Let us take practical inference as a case study. The central
observation — originally noticed by Horty (2015) — is that the oughts in (P1)
and in (C) interact di↵erently with enkrasia. Suppose I deliberate about my
day and I take as input that I ought to repay Ann (P1). In the absence of
conflicts, this basic ought leads via enkrasia to the goal of repaying Ann,
something that I plan for in itself. From there, via deontic closure, I do well
in deriving that I ought not go to the movies (C). However this derived ought
does not interact with enkrasia in the same way: Refraining from going to the
movies is not a goal in its own right. Rather, it is something I necessarily have
to do in order to fulfill my goal of repaying Ann. In other terms, the derived
ought registers the necessary (though possibly not su�cient) conditions for the
fulfillment of such a goal (see also Brown, 2004).

It is with respect to enkrasia that the di↵erent roles played by basic and
derived oughts become evident. This motivates taking basic and derived oughts
as two separate kinds of oughts in this context. Once these are understood as
two separate oughts, having di↵erent logical meanings, it becomes non-trivial
to say that there are instances of deontic closure that move from basic oughts
to derived oughts. These instances will be valid in our logic. As elaborated
above, this bears crucial implications for practical inference. Similar consider-
ations apply to Ross’ Paradox. Acknowledging the di↵erent roles of the oughts
involved, I do well in deriving that I ought to mail the letter or burn it only
to the extent that this expresses no more than the (logically) necessary — but
not su�cient — conditions for the fulfillment of my goal of mailing the letter.
In other terms, my inference is only valid to the extent that I ought to mail the
letter or burn it is a derived ought.

3.3 Challenge III: Dynamic Conditions

The last challenge, finally, brings dynamics into the picture. Our initial rea-
son for focusing on dynamics is mainly conceptual, as it is especially when
seen through the lenses of dynamic change that the di↵erences between basic
oughts, goals and derived oughts become most prominent. The following two
observations illustrate what we have in mind. Firstly, it is a well-known feature
of goals in plans that they tend to be stable under various perturbations (cf.
Bratman, 1987, pp. 16,67). Reflecting the fact that goals are ultimately things
the agent has committed to, there is a tendency for goals in plans to resist
reconsideration, and in particular not to be discarded at every slight change
that might occur in the agent’s information:

5 This is why we have stressed that basic oughts are oughts to which enkrasia may apply.
Since basic oughts are possibly inconsistent, while goals are not, it follows that not all basic
oughts correspond to goals. See our discussion in Section 3.1.
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Example 3.3 Suppose that giving 10 euro back to Ann is a goal in my plan.
My plan involves reaching Ann’s house either by car or bus, as I believe these
are the only options for getting to her place. Now if I learned that my car is
broken, I would not simply give up my goal to repay Ann. Normally, I would
rather maintain my goal and replan to get to her house by another means, for
instance, by bus.

Let us call practical dynamics any changes in the agent’s information about
what the world looks like. This is, in fact, the kind of dynamics at work in
Example 3.3. Then, the basic idea is that goals in plans are not reconsidered
whenever practical dynamics occur. Of course, goals are not irrevocable. They
should, for instance, be dropped if they become inconsistent (cf. Bratman,
1987, p.16). Yet, goals are stabler than other notions with respect to practical
dynamics. This leads us to a second observation. Echoing Horty (2015), we
can appeal to a sort of “stability test” to illuminate the conceptual distinction
between basic oughts, at least those that correspond to goals via enkrasia, and
derived oughts. The following example shows that derived oughts are generally
less stable with respect to practical dynamics: 6

Example 3.4 Suppose I ought to repay 10 euro to Ann (basic ought), and I
hold the corresponding goal in my plan. Moreover, suppose that I do not have
a lot of money, and hence conclude that I ought not go to the movies (derived
ought), although I would really like to. Now if I learned that I have additional
money at home, su�cient for both repaying Ann and buying a cinema ticket, I
would give up that I ought not go to the movies. While I would maintain that
I ought to repay Ann, and hence that doing so is a goal in my plan, I would
not maintain that I ought to make sure not to go to the movies.

Hence, while the di↵erence between basic oughts and derived oughts is
not explicitly reflected in surface grammar, testing stability with respect to
practical dynamics can help to make this conceptual distinction salient. 7

The above observations show the relevance of investigating the e↵ects of
practical dynamics. Unanticipated obstacles or unexpected opportunities can
diversely a↵ect various notions at play in enkrasia, specifically goals in plans
and derived oughts. The challenge then consists in precisely characterizing how
and under which conditions these change dynamically.

4 Introducing the Framework

We can turn now to the first aim of this paper: Providing a logical framework for
enkrasia. For the analysis, we posit a set of minimal requirements about
basic oughts, goals in plans, and derived oughts. The reader may find these
incomplete. However, our aim here is not to reveal the full logical principles

6 A version of Example 3.4 is discussed in Horty (2015), p.225.
7 We thank an anonymous reviewer for drawing attention to the fact that the contrast
between basic oughts and derived oughts is not marked in ordinary language. The distinction
between the two oughts is mainly conceptual.
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governing oughts or goals. Rather, we aim for a minimal set of axioms strong
enough to identify relations between basic oughts, goals and derived oughts that
result from our analysis of enkrasia. Working towards a more complete logic
of oughts and goals, additional axioms could be added in the future, validating
further theorems. Of course, in such a stronger logic, the relationships identified
here would continue to hold.

Despite the intended minimalism, devising a logic for enkrasia requires a
variety of conceptual and formal choices. Some of these are core features of
the framework developed. Others are mere design choices that could be altered
easily. The following discussion details both.

4.1 Core Features

Basic oughts, goals and derived oughts. The framework’s first core
component is three main logical operators: A modal operator for basic oughts,
one for goals in plans, and finally one for derived oughts. We implicitly assume
basic oughts to satisfy the three conditions identified in Section 2: They are
believed by the agent, normative, and ascribed to the agent herself. Moreover,
we take oughts and goals to be future-looking, referring to future states of
a↵airs to be brought about.

Information states. The framework focuses on a single moment in time,
specifically, where the agent deliberates on what to do. The choice options
represented in the logic are those believed possible by the agent; they form, in
some sense, her information state. 8 In fact, the framework with its various
components is fully relative to the agent’s beliefs, and so can do without any
explicit doxastic operators.

A thin logic for basic oughts and goals. The starting point of the
framework is a set of basic oughts. At present, the logic governing basic oughts
remains thin. We do not assume basic oughts to have any logical structure
such as being closed under implication or pairwise intersections, nor do we
require the content of a basic ought to be satisfiable, even in principle. The
only requirement made is that basic oughts are independent of their exact
description, i.e., the agent’s set of basic oughts is closed under replacement
of logically equivalent formulas. 9 The logic of basic oughts, hence, will turn
out weaker than normal in the logical sense: It will be a neighborhood modal
logic (cf. Pacuit, 2017). Similar considerations apply to goals. The set of goals
in the agent’s plans will be a consistent subsets of her basic oughts. Hence,

8 Unlike in most epistemic frameworks, this information state does not list epistemic pos-
sibilities the agent cannot distinguish between, but a set of possible options the agent can
choose from.
9 We are arguably omitting certain structural properties of basic oughts. For instance, a
plausible further requirement to impose on basic oughts could be what Cariani (2016) calls
“weakening”: O' ^ O ✏ O(' _  ). Nevertheless, we will show that the present framework
contains su�cient structure for a logical analysis of enkrasia.
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also the goal modality will turn out to be a non-normal neighborhood operator.

A thicker logic for derived oughts. While assuming the logic of basic
oughts and goals to be thin, the resulting neighborhood logic is strong enough
to license crucial deontic inferences. Derived oughts play a central role in such
reasoning. To illustrate how these are represented in the framework, we first
note that the agent may be committed to multiple goals in parallel. Following
the principles of internal consistency and strong consistency, these
goals are required to be jointly consistent. Put formally, this means that there
must exist some possible course of events which satisfies all of the agent’s goals.
We call such courses of events admissible. Derived oughts, then, denote those
properties that all admissible courses of events have in common. In other words,
derived oughts indicate the necessary (but possibly not su�cient) conditions
for the fulfillment of all the agent’s goals. Derived oughts, unlike basic oughts,
hence follow a normal modal logic.

t0

' ' ',  

t0

' ' ',  

t0

' ' ',  

Fig. 1. Left: The subtree compatible with the satisfaction of the agent’s basic ought
and goal that ' (gray). Middle: The subtree compatible with the satisfaction of
agent’s basic ought and goal that  (gray). Right: Interaction of both basic oughts
and goals (dark gray). Bold arrows denote the admissible subtree, i.e., the courses of
events compatible with the satisfaction of both goals ' and  .

4.2 Design Choices

Branching temporal trees. Oughts and goals, we have said, are future-
looking. Correspondingly, the agent’s relevant choices when deliberating on
what to do are between possible future courses of events. In the present frame-
work a fine-grained perspective on such future courses of events is assumed,
representing the relevant temporal structure explicitly. To this end, all possi-
ble future unfoldings of the world are recorded in a temporally branching tree,
where each maximal branch — each history — corresponds to a possible future
course of events. For an illustration of a branching time setting see Figure 1.

In accordance with this fine-grained perspective, oughts and goals need
to be expressed in an adequate formal language rich enough to capture their
temporal structure. To this end, the framework involves a temporal logic that
can express, for instance, that certain states of a↵airs should always be avoided,
reached at least once or maintained throughout.

Notably, representing possible courses of events as temporally extended
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histories is not strictly necessary. For the static part of the logic (Section 7),
it would su�ce to treat each possible course of events as a single state, giving
rise to a more classic neighborhood logic. It is only in the dynamic extension
of Section 8 that the temporal structure becomes relevant.

From basic oughts to goals. An agent’s goals, we have said, form a subset
of her basic oughts. The latter, however, are potentially inconsistent whereas
goals are not. A central component for the transition from basic oughts to goals
will hence be (maximally) consistent subsets of basic oughts, as these guarantee
that the principles of internal consistency and strong consistency are
satisfied. 10 Note, however, that there can be multiple maximally consistent
subsets of basic oughts. So how are goals related to maximally consistent sets
of basic oughts? There exist at least two viable ways of approaching this:

• In a strict reading, a basic ought is adopted as as goal if it is contained in
every maximally consistent set of basic oughts.

• In a more tolerant approach, a basic ought is adopted as goal if it is
contained in some specific maximally consistent set of basic oughts.

The tolerant approach will, in general, lead to more goals than the strict
approach. In fact, by picking a single maximally consistent subset of basic
oughts, it guarantees the agent to do the best she can in terms of adopting
a multitude of goals without violating consistency. The following analy-
sis follows the tolerant approach. 11 We are hence in need of a mechanism
for selecting which maximally consistent set of basic oughts correspond to goals.

Linear priority on basic oughts. For selecting a maximally consistent
subset of basic oughts, we assume the latter to be ordered linearly. 12 By means

10A competing notion of consistency, which we might call free choice consistency, is discussed
in Veltman (2011). Veltman would consider O(¬') and O('_ ) inconsistent, as the former
violates the free choice expressed by the latter. In this paper we do not deal with free choice,
and hence we limit ourselves to a classic account of consistency. Free choice in the context
of planning is considered in Marra and Klein (2015).
11The strict approach is prominently pursued by Kratzer in her seminal 1981 approach to
the semantics of deontic operators. There, briefly, a possibly inconsistent set of normative
requirements N creates an ideality ordering on a set of possible worlds W . To define the
ordering, let N(w) for a world w be the set of normative requirements from N satisfied at
w. The ordering is then defined by a > b (read “a is more ideal than b”) if N(a) � N(b).
A deontic necessity statement 2', finally, holds true in the framework if ' is satisfied in all

>-maximal worlds. Notably, >-maximality is tightly related to maximally consistent subsets.
More specifically, world w is >-maximal i↵ no M with N(w) ⇢ M ✓ N is satisfiable in W , i.e.
i↵ N(w) is maximally W -consistent. It follows that 2' is true i↵ ' holds in all intersections
of maximally consistent subsets of norms. This is exactly the above strict reading.
In fact, various aspects of Kratzer’s approach have counterparts in the present framework.
To make these explicit: normative requirements N and possible worlds correspond to basic
oughts and histories of tree T respectively. The deontic necessity operator, finally, corre-
sponds to our modality for derived oughts.
12Hence, albeit we do not rule out the possibility of having both O' and O¬' as basic
oughts, we exclude irresolvable dilemmas. One basic ought must take priority over the other.
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of the lexicographic order (cf. Definition 6.6), this linear order extends to a
priority ordering among sets of basic oughts. The agent then adopts the highest
ranked maximally consistent subset of her basic oughts as goals. The current
framework is, however, modular in this respect. Any other mechanism for
picking out one element from any given set of maximally consistent set of oughts
would function just as well. In fact, the choice of selection mechanism does not
have any impact of the static analysis of Sections 6 and 7. In particular, the
assumption of oughts being ordered linearly is non-substantial for the present
purpose.

4.3 Towards a Logic for Enkrasia

The construction of our formal framework proceeds in two steps. The first step
(Sections 5–7) defines two static logics ⇤Enkr and ⇤Enkr,2. Having modalities
for basic oughts, goals and derived oughts, these already incorporate enkra-
sia through a number of axioms regulating the relationship between the three
components. The second of these logics o↵ers an additional global modality 2

allowing the agent to reason about which options are available to her.
The second step (Section 8) adds dynamic operations to the logics defined.

We focus on practical dynamics: The updating operations we consider can
add or remove possible courses of events, but leave the agent’s basic oughts
unaltered. Nevertheless, practical dynamics turn out to have complex e↵ects
on goals and derived oughts. Studying these — we hold — provides additional
insights into the relationship between basic oughts, goals and derived oughts.

5 The Language

To begin, let us specify the logical language used. The construction proceeds in
several steps. First, we define two languages L0 and L1 to talk about present
and future states of a↵airs. This language will serve to express the content of
oughts and goals. Afterwards, we introduce language L2 that allows to reason
about basic and derived oughts, goals and their interaction.

Definition 5.1 Let At be a finite or countable set of atomic propositions. The
basic language L0 is given by the standard language of propositional logic
combined with a future-tensed operator F . It is defined by the following BNF:

 := p|¬ | ^  |F 

for p 2 At. The intended reading of modal expressions F is “ is true at least
once in the future”. We denote the dual of F by G. G hence reads as “ is
always true in the future”. Operators ! and _, finally, are defined as usual.

It is convenient to consider the future looking fragment of L0:

Definition 5.2 The language L1 is the fragment of L0 containing only future-
tensed formulas. Formally, L1 is defined as follows:

' := F |¬'|' ^ '
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for  2 L0. Clause F of this BNF guarantees that every atomic proposition
is under the scope of a future tensed modality.

Building on L1, the modal language for reasoning about basic oughts, goals
in plans, and derived oughts can be defined.

Definition 5.3 The modal language L2 is given by the following BNF:

' := p|O |Goal |D |¬'|' ^ '
for p 2 At and  2 L1. The intended reading of the three modal operators is
the following: O' reads as “' is a basic ought”, Goal' as “' is a goal in a
plan”, and finally D' reads as “' is a derived ought”. Again, operators ! and
_ are defined as usual.

Two observations about L2 are in order. Firstly, the language does not allow
for iterated modalities. This is a feature shared with several other systems of
deontic logic. Secondly, being built over the temporal fragment L1 of L0, the
modal language L2 only allows for basic oughts, goals and derived oughts to
scope over future-tensed formulas. Our oughts and goals are, as we have said,
future-looking.

6 Semantics

Before introducing logical principles on the above languages, we specify the
intended semantical structures for basic oughts, goals, and derived oughts.
Section 7 then provides an axiomatization that is sound and complete with
respect to the semantics introduced here. We begin our analysis by introducing
trees, delineating how the agent envisages the possible unfoldings of future
events.

Definition 6.1 A tree is an ordered set T = hT,�T i where T is a set of
moments and �T a tree-order on T . We make two additional assumptions
about �T . First, the tree order is assumed to have a root, i.e., a minimal
element t0 satisfying t0 �T t for all t 6= t0. Second, �T is also serial, i.e., every
moment must have at least one successor. 13 A history h, finally, is a maximal
linearly ordered subset of T .

Intuitively, t0 indicates the current time step, i.e, the moment at which the
agent ponders what to do. Notably, a tree is the union of its histories, i.e.
T =

S{h ✓ T | h history}. We will make heavy use of this later. To ease
terminology, we will use the term subtree for any tree T 0 that is of the formS

h2Hist h withHist a set of histories of T . We will denote the set of subtrees of
T by P(T ). Lastly, let T 0 and T 00 be subtrees of T given by T 0 =

S
h2Hist0 h

and T 00 =
S

h2Hist00 h respectively. Then define the intersection subtree
T 0eT 00 of T as the subtree generated by Hist0 \ Hist00, i.e. 14 T 0eT 00 :=S

h2Hist0\Hist00 h.

13This definition remains silent about the exact shape of a tree. It allows for finite as well
as infinite branchings and also for discrete as well as dense orders.
14Note that T 0eT 00 ✓ T \ T . In general, however, T 0eT 00 is a proper subset of T \ T .
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Based on the definition of a tree, we can define a tree model for our temporal
language L0.

Definition 6.2 A pointed tree model is a tuple M = hT , t0, vi where T =
hT,�T i is a tree, t0 the distinguished time, i.e. the root of T and v : At ! P(T )
is a valuation function which maps each atomic proposition of the background
language into a set of moments of T .

A pointed tree models provides a semantics for language L0:

Definition 6.3 Let M be a pointed tree model. The evaluation of formulas
of L0 on time-history pairs t/h with t 2 h of M is defined as follows:

• M, t/h |= p i↵ t 2 v(p) for p atomic

• M, t/h |= ¬' i↵ M, t/h 6|= '

• M, t/h |= ' ^  i↵ M, t/h |= ' and M, t/h |=  

• M, t/h |= F' i↵ there is a t0 2 h such that t �T t0 and M, t0/h |= '

Finally, we say that a formula is true at t simpliciter i↵ it is true at t/h0 for all
histories h0 passing through t.

Definition 6.4 Let ' 2 L0 and t 2 T . The proposition expressed by ' at t,
i.e., the truth subtree J'Kt, is defined as follows:

J'Kt =
[

{h|t 2 h and M, t/h |= '}

Towards developing a semantics for the language L2, we finally extend tree
models with neighborhoods representing the agent’s basic oughts. A central
component of these extended models will be sets of the form J'Kt0 , representing
the truth set of ' as seen from the moment of deliberation t0.

Definition 6.5 An enkratic model is a tuple M = hT , t0, v,NO,�Oi where
hT , t0, vi is a pointed tree model, and NO ✓ P(T )⇥L1 is a neighborhood with
the additional condition that (T 0,') 2 NO implies that T 0 = J'Kt0 . Finally
�O is a conversely well-founded linear order on the set of all ' such that
(J'Kt0 ,') 2 NO. 15

Presently, we are only interested in the agent’s basic oughts at the time of
reasoning t0. We can represent these with a set of treelike neighborhoods NO

listing all the basic oughts the agent is exposed to at t0. 16 It might seem
counterintuitive to represent a basic ought by a subset-formula pair (J'Kt0 ,')
rather than simply a subtree J'Kt0 . The reason for this will become clear in

15Where �O is a conversely well-founded linear order if and only if it is antisymmetric,
transitive, total and every subset B ✓ {' | (J'Kt0 ,') 2 NO} has a �O-maximal element.
16The approach could be extended to include the agent’s basic oughts along all moments
of a tree. Such an extension requires additional conceptual work, as basic oughts may, for
instance, get discarded once they have been satisfied. Also, an extension will need to specify
what happens to basic oughts in future moments where they have become unsatisfiable for
pragmatic or principal reasons. Technically, such an extension would work by replacing the
neighborhood NO with a neighborhood function nO : T ! P(P(T )⇥ L1).
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Section 8 where dynamics enter the picture. Briefly, two propositions ' and  
may be co-extensional in the current tree, but might cease to be so once new
information about the world is acquired. For this case, it is necessary to keep
track of whether the basic ought prescribes that ' or  .

On a given enkratic model, we can construct additional structures related to
the semantics of goals and derived oughts. The first is the goal-neighborhood
NG ✓ P(T ). For the construction we recall the definition of a lexicographic
order.

Definition 6.6 Let �O be a conversely well-founded linear order on a set of
formulas  ✓ L1. Then the lexicographic order �Lex on the power set P( )
is defined by X �Lex Y i↵ there is some x 2 X, x 62 Y such that

{z 2 X | z �O x} = {z 2 Y | z �O x}.

In other words, x is the�O-most important element on whichX and Y disagree.

The goal neighborhood NG ✓ P(T ) is determined by three conditions. First,
the goals in an agent’s plan must be derived from basic oughts. Second, the set
of goals in a plan should be consistent. The third condition, finally, expresses
that the set of goals is chosen optimally, given the agent’s priority relation �O

between her basic oughts. Formally, the conditions on NG are:

i) NG ✓ {J'Kt0 | (J'Kt0 ,') 2 NO}.
ii) NG is maximally consistent, i.e.,

a) there is some history h of T with h ✓ J'Kt0 for all J'Kt0 2 NG and
b) whenever NG ⇢ Y ✓ {J'Kt0 | (J'Kt0 ,') 2 NO} there is no history h0

with h0 ✓ J'Kt0 for all J'Kt0 2 Y .

iii) NG is �O-maximal, i.e.,
whenever Y satisfies i) and ii) then {' | J'Kt0 2 NG} �Lex {' | J'Kt0 2
Y )};
where �Lex is the lexicographic order on P({' | (J'Kt0 ') 2 NO})
induced by �O. (Cf. Definition 6.6).

Note that the three conditions uniquely determine the neighborhood NG

which is therefore well-defined.
From NG the third central component of enkratic models —besides basic

oughts and goals— can be defined. Let us begin by introducing what we call
the admissible subtree Tadm. The admissible subtree Tadm, briefly, is the
intersection of the various subtrees corresponding to the agent’s goals. Hence,
it consists of all those histories that guarantee all of the agent’s goals to be
satisfied. It is from this admissible subtree that the agent’s derived oughts are
determined. Derived oughts indicate what holds in Tadm, and therefore can be
thought of as expressing the necessary conditions for the fulfillment of all the
agent’s goals. To state things formally, the admissible subtree is defined as

Tadm :=eJ'Kt02NG

J'Kt0 .
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From the properties of NG, it follows that Tadm is non-empty. Having defined
Tadm, we can give the semantic conditions turning enkratic model into models
for language L2. Unlike L0, the language L2 is evaluated on moments t rather
than time-history pairs t/h. We take this to be a natural condition, as L2

represents the agent’s oughts and goals at a moment in time t0 where she
has not yet acted on any particular course of events, i.e., any history h. The
following definition builds on the evaluation of L0 (and hence L1) on pointed
tree models, (cf. Definition 6.3).

Definition 6.7 The evaluation of L2 on an enkratic model M is given by
the following clauses:

• M, t |= p i↵ t 2 v(p) for p atomic

• M, t |= ¬' i↵ M, t 6|= '

• M, t |= ' ^  i↵ M, t |= ' and M, t |=  

• M, t |= O' i↵ (J'Kt0 ,') 2 NO

• M, t |= Goal' i↵ J'Kt0 2 NG and (J'Kt0 ,') 2 NO.

• M, t |= D' i↵ Tadm ✓ J'Kt0

Notably, the semantics of Operators O,Goal and D does not depend on the
moment t of evaluation, but only on the initial time t0. These modalities, hence,
are meant to represent the agent’s basic oughts, goals and derived oughts at
the time of deliberation t0.

In sum, the semantics of all three modalities supervenes on two components
of the model: The neighborhood NO and the priority ordering �O. While the
semantics of O, the basic ought modality, is directly given by NO, the Goal
modality’s neighborhood is derived by having �O pick a maximally consistent
subset of NO. This goal neighborhood, in turn, defines the derived ought
modality D’s admissible subtree by means of intersection.

7 Syntax: Axioms and Results

In this section, we provide an axiomatization for the various languages intro-
duced in Section 5. We start with axioms for the temporal languages L0 and
L1.

KG G('!  ) ! (G'! G )
4 G'! GG'
L F' ^ F ! (F (' ^  ) _ F (' ^ F ) _ F ( ^ F'))
DG ¬G?

These are accompanied by the classic necessitation rule

` '
NecG` G'

The first two axioms are the standard K and 4 axioms, expressing that G is
a normal modal operator and that the ‘later’ relation is transitive. The third
axiom L reflects the fact that histories are linear, expressing that two future



18 From Oughts To Goals. A Logic for Enkrasia

events ' and  will either be simultaneous, or that one comes after the other.
Finally, the D-style axiom DG expresses that time never ends, as there always
is a future moment. We denote the temporal logic over language L0 generated
by KG,4,L,DG and G-necessitation NecG by ⇤temp.

Next, we turn to the extended language L2. Operators O and Goal only
have a limited logical structure. Reflecting the actual content of oughts issued
by a normative source, we do not presuppose any logical requirements on basic
oughts other than being invariant under replacement with logical equivalents.
This is the content of:

` '$  
IntO` O'$ O 

The corresponding intensionality condition for the Goal operator also holds,
as is shown in Lemma 7.3. While goals and basic oughts are not closed under
logical reasoning, derived oughts are. In particular, the D-operator is normal
and non-trivial, as expressed by the following axioms

KD D('!  ) ! (D'! D )
DD ¬D?

` '
NecD` D'

Lastly, and most importantly, the logic is guided by three interaction axioms
describing the interplay between goals, basic and derived oughts. It is these
principles that embody the enkrasia principle in the logic.

GO Goal'! O'
GD Goal'! D'
Max O' ^ ¬Goal'! D¬'

The first of these expresses that basic oughts are the only admissible sources
of goals in the agent’s plan. Every Goal follows from a basic Ought. The
second axiom, GD, is a weak converse, saying that every Goal gives rise to
a corresponding Derived ought. The third axiom, Max, finally embodies the
bounded validity of enkrasia, as can best be seen from its counterpositive
¬D¬' ! (O' ! Goal'): If it is not the case that already ¬' is a derived
ought, then if ' is a basic ought, ' is also a goal. Hence, in combination with
KD andDD, Max states that every basic ought has a corresponding goal unless
this causes a violation of consistency. Put semantically, Max expresses that
the set of goals is a Maximally consistent subset of the agent’s basic oughts. 17

Definition 7.1 The Enkrasia logic ⇤Enkr on language L2 is de-
fined by all propositional tautologies together with the axioms
KG,4,L,DG,KD,DD,GO,GD,Max and the rules IntO,NecG and NecD

(cf. Table 1).

Before moving on to completeness, let us take a moment to derive a number
of consequences of the above axioms. First, we note that whenever an agent

17 If we had instead chosen the strict principle of translating basic oughts into goals, (cf.
Section 4.2) i.e., only taking those basic oughts that are contained in all maximally consistent
subsets instead, Max would need to be replaced by the weaker O' ^ ¬Goal'! ¬D'
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has a goal to ', her derived oughts contain all logical consequences of '. This
follows immediately from axioms KD and GD together with NECD.

Fact 7.2 ll
` '!  

` Goal'! D 

Second, we note that the Goal operator is closed under replacement with logical
equivalents:

Lemma 7.3 Wurst?
` '$  

` Goal'$ Goal 

Proof. Assume ` ' $  . For a contradiction, also assume that Goal' but
¬Goal . By GO we have O' and hence by IntO also O . Hence we have
O ^ ¬Goal which implies D¬ by Max. On the other hand, GD implies
D'. By NecD and KD this implies D(' ^ ¬ ) which, again by KD, implies
D? contradicting DD. 2

Next, note that the logic does not demand an agent’s basic oughts to be jointly
consistent. Our agent may, for instance, believe both O' and O¬' simultane-
ously. The set of goals, however, is required to be internally consistent.

Lemma 7.4 Let ⇤ ✓ L2 be a consistent set and let S = {' 2 L1 | Goal' 2 ⇤}
Then S 6`⇤temp ?.

Proof. Assume for a contradiction that S `⇤temp ?. Since all its axioms
correspond to first order expressible frame conditions, ⇤temp is compact (cf.
Blackburn et al., 2001, Chapter 2.4). Hence there is a finite S0 ✓ S such that
S0 `⇤temp ?. By Fact 7.2, we have {Goal'|' 2 S0} `⇤Enkr

V
'2S0

D'. By KD

we then get {Goal'|' 2 S} `⇤Enkr D
V
'2S0

', i.e. {Goal'|' 2 S} `⇤Enkr D?
contradicting DD. 2

An immediate consequence is that the Goal operator satisfies the D-axiom, i.e.

` Goal'! ¬Goal¬'

In fact, this consistency requirement is solely responsible for discrepancies be-
tween basic oughts and goals. By Max, whenever O' ^ ¬Goal' hold at some
state w, this is because Goal' could not have been consistently added to the set
of present goals, as it would require both D' and D¬' to hold simultaneously.

Having specified our treatment of enkrasia, it is now time to present
a general characterization result. However, before being able to do so, we
need to make an extra assumption about enkratic models. For the rest of this
paper, we assume the neighborhood NO to be closed under logical equivalence.
That is, if ' and  are logically equivalent in ⇤temp and (J'Kt0 ,') 2 NO then
also (J Kt0 , ) 2 NO. It follows immediately that also NG is closed under
⇤temp logical equivalence. With this assumption, we can show the following
characterization result, which is proved in the appendix.
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Axioms of ⇤temp over L0

4 G'! GG' ` '
NecG` G'DG ¬G?

KG G('!  ) ! (G'! G )
L F' ^ F ! (F (' ^  ) _ F (' ^ F ) _ F ( ^ F'))

Axioms of ⇤Enkr over L2

KD D('!  ) ! (D'! D ) ` '
NecD` D'DD ¬D?

GD Goal'! D'
GO Goal'! O' ` '$  

IntO` O'$ O Max O' ^ ¬Goal'! D¬'
⇤temp for L1 formulas inside O,Goal,D

Additional Axioms for ⇤Enkr,2 over L2

ND 2'! D' ` '
Nec2` 2'K2 2('!  ) ! (2'! 2 )

Table 1
Axioms and rules of ⇤temp, ⇤Enkr and ⇤Enkr,2

Theorem 7.5 The logic ⇤Enkr is sound and complete with respect to the class
of enkratic models.

7.1 Enriching the Language: A Global Modality

Note that language L2 su↵ers from what might be perceived as a lack of ex-
pressive power. So far, L2 can express whether the agent is under a certain
basic ought that ' and whether this ought translates into a goal. What L2

cannot yet express is whether the agent considers ' possible in the first place,
i.e., whether she believes her basic ought that ' to be satisfiable. To remedy
this, we add a new modal operator 2, where 2' for some ' 2 L1 is to express
that ' holds in all possible histories. As usual, 3 stands for the dual of 2.
So 3 expresses that there is a possible  -history or, at least, one the agent
considers possible. To incorporate 2, we expand language L2 to L2 given by
the BNF:

' := p|O |Goal |D |2 |¬'|' ^ '

for p 2 At and  2 L1. The semantics of L2 on an enkratic model is given by
the semantics of L2 extended with the clause

M, t ✏ 2' i↵ M, t/h0 ✏ ' for all branches h0 with t 2 h0

On the axiomatic side, the new modality 2 is governed by the axioms and rules
below. The first, ND, expresses that the agent is under a derived ought to '
whenever ' is unavoidable to her. K2 is the K-axiom for 2.
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ND 2'! D'
K2 2('!  ) ! (2'! 2 )

` '
Nec2` 2'

We denote the extension of ⇤Enkr with ND, K2 and Nec2 by ⇤Enkr,2. That
is ⇤Enkr,2 is the logic on L2 defined by all propositional tautologies together
with the axioms KG, 4,L,DG,KD,DD,GO,GD,Max,ND,K2 and the rules
IntO,NecD,NecG and Nec2. See Table 1 for an overview. As we will see
below, ND covers the full interaction between 2 and the other operators.

Having the expressive resources of ⇤Enkr,2, we are finally in a position to
show that goals satisfy strong consistency, as desired:

Lemma 7.6 Let ⇤ ✓ L2 be consistent, and let S ✓ {' 2 L1 | Goal' 2 ⇤} be
finite. Then {Goal' 2 ⇤} `⇤Enkr,2 3

V
'2S '.

Proof. Assume
V
'2S Goal'. By iterated application of GD, we can deriveV

Goal'2S D'. By KD and NECD this implies D
V

Goal'2S ' By KD and DD

this implies ¬D¬V
Goal'2S '. The counterpositive of KD then allows us to

derive 3
V

Goal'2S '.
2

An immediate consequence is:

` Goal'! 3'

We turn now to a characterization result for ⇤Enkr,2:

Theorem 7.7 Assume At is infinite. Then the logic ⇤Enkr,2 is sound and
weakly complete with respect to the class of enkratic models.

The proof can be found in the appendix. Note that a strengthening of this
result is not valid. Unlike ⇤Enkr, the extended logic ⇤Enkr,2 is only weakly
complete with respect to the class of enkratic trees, at least if At is infinite. 18

7.2 Back to Challenge I: From Inconsistent Oughts to Consistent
Goals

This is the right moment to return to the first two of the three challenges
posed in Section 3. We consider them in turn. The first challenge concerned
the potential tension between enkrasia and the two principles of internal
and strong consistency of goals in plans. Within the current framework,
the tension was solved by weakening enkrasia. internal and strong con-
sistency of goals are logically valid principles, while enkrasia is only valid
within bounds. internal and strong consistency are, in fact, the only
bounds to enkrasia’s validity. While basic oughts are possibly inconsistent,
and hence not all basic oughts can correspond to goals, the agent’s set of goals
is guaranteed to be a maximally consistent subset of her basic oughts. That

18To see this take some ' 2 L1 that is neither a tautology nor a contradiction. Then the set
{3' ^D¬'} [ {¬O |  2 L1} is ⇤Enkr,2 consistent. In fact, every finite subset thereof is
realizable in a enkratic -model. However, for a enkratic -model M to satisfy {¬O |  2 L1}
we need that NO = ;. This, however, implies that the admissible subtree is all of T , which
yields that M, t0 ✏ D¬' i↵ M, t0 6✏ 3', i.e., it is impossible that M, t0 6✏ 3' ^D¬'.
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is, the agent validates as many instances of enkrasia as is possible without
violating internal and strong consistency.

Note that the bounds imposed on enkrasia do not, as such, fully deter-
mine for which basic oughts the principle is valid. There might be more than
one maximally consistent subset of the agent’s basic oughts, hence additional
choices are necessary. To this end, the framework incorporates a selection
mechanism, fueled by the agent’s priority ordering �O. This aspect is, how-
ever, less central for the resulting logic. Any alternative selection mechanism
would validate the same logical principles.

To illustrate the choices made, let us return to Example 3.1: Suppose I
believe I ought to repay 10 euro to my friend Ann. I also believe I ought to
go to the movies with Barbara. However, money is scarce, and I believe it is
impossible for me to do both.

Put formally, the basic oughts of Example 3.1 are O(F r) and O(Fm) (we
assume, for the sake of illustration, that no other basic oughts are in play).
If enkrasia were applied unrestrictedly, it would follow that Goal(F r) and
Goal(Fm) which, given that ¬3(F r ^ Fm), would violate strong consis-
tency. Hence, enkrasia can only be applied to a maximally consistent subset
of those basic oughts, i.e., either to {OF r} or to {OFm}. Which one of the
two depends on the lexicographic order induced by �O. Suppose I believe that
settling my debt with Ann takes precedence over going to the movies with Bar-
bara, i.e., F r �O Fm. It follows that enkrasia applies only to {OF r}. The
only goal derived is Goal(F r), and since 3(F r) holds, no violation of internal
or strong consistency occurs.

7.3 Back to Challenge II: Basic and Derived Oughts

The second challenge asked to distinguish valid from invalid logical inferences
about oughts. Our focus was specifically on the notorious principle of deontic
closure. Even if one accepts that deontic closure is not generally valid, we
have argued that an outright rejection of the principle is a too strong, and
ultimately unsatisfying, solution. The challenge, hence, is to provide a deontic
logic that is thick enough to license those instances of deontic closure that are
unproblematic.

A central step towards meeting this challenge was the distinction between
two types of oughts, basic and derived. Building on this distinction, we can
illustrate the main characteristics of those deontic inferences that are valid in
our logics ⇤Enkr and ⇤Enkr,2. Let us begin by limiting the possible conclusions
derivable from valid deontic inferences. Leaving aside axiom GO and IntO,
the logics ⇤Enkr and ⇤Enkr,2 can only produce derived oughts as conclusions.
In valid instances of deontic closure, hence, the ought inferred as a conclusion
is a derived ought D in our sense.

More positively, valid deontic inferences are of the following kinds. First, the
axiom GD allows us to infer a derived ought D' from a corresponding basic
ought, provided that Goal' also holds. This reflects the idea that derived
oughts are necessary conditions for the fulfillment of goals. Second, since the



23

derived ought operator D is a normal modality, classical reasoning within the
scope of derived oughts is a valid mode of inference. Thus, new derived oughts
can be derived by standard modal reasoning from old ones. Finally, within the
extended logic ⇤Enkr,2, axiom ND can be used to infer derived oughts also
from global facts about the space of available options.

To illustrate the strength of this approach, let us recall the main lines of
Example 3.2: Suppose that I ought to repay Ann 10 euro. Moreover, I believe
that unless I refrain from going to the movies it is impossible to repay Ann.
So, I conclude, I ought not go to the movies.

We have called the inference in the above example practical inference, and
argued that valid practical inferences move from basic oughts to derived oughts.
In the specific case of Example 3.2, practical inference moves from O(Fp),
indicating the basic ought to repay Ann (i.e., once), to D(G¬m), indicating
the derived ought to refrain (i.e., always) from going to the movies. It is
a characteristic of our approach that derived oughts indicate the necessary
conditions for the fulfillment of the agent’s goals. To derive that D(G¬m) we
therefore need to require that repaying Ann is in fact a goal in the agent’s plan.
With this in place, we can apply the inference rules described in Section 7 to
derive the desired conclusion:

(i) O(F r) (P1)
(ii) 2(F r ! G¬c) (P2)
(iii) Goal(F r) (P3)
(iv) Goal(F r) ! D(F r) Axiom GD
(v) D(F r) From (iii), (iv) and Modus Ponens
(vi) D(F r ! G¬c) From (ii) and ND
(vii) D(G¬c) From (v)–(vi), KD and NecD

Let us conclude with some observations about Ross’ Paradox. The dis-
tinction between basic and derived oughts allows us to disentangle di↵erent
readings of Ross’ Paradox. Some of these are problematic, others in fact are
not. Suppose we start from a basic ought to mail the letter. From such a
premise, the logics ⇤Enkr and ⇤Enkr,2 allow us to infer at best a derived ought
to mail or burn the letter. 19 Such an inference is not paradoxical. Being a
derived ought, mailing or burning the letter is not an ought to which enkrasia
may apply: It cannot become a goal in its own right. Such a derived ought
merely describes a necessary condition for the fulfillment of the goal of mailing
the letter, not a su�cient one. In fact, burning the letter is not an admis-
sible option (i.e., states of a↵airs in which the letter is burnt lie outside the
admissible subtree); hence, also a derived ought not to burn the letter can be
inferred.

19And even that only if also the goal to mail the letter is present.
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8 Dynamics

Finally, we turn towards the dynamics of basic oughts, goals and derived oughts.
More precisely, we study how goals and oughts change when the agent receives
new information that impact her mental picture of the world and the options
available to her. In general, informational changes may trigger significant re-
planning, as the agent’s original options might not be admissible anymore or
new, better options have become available.

Our focus here is exclusively on what we have called practical dynamics.
Crucially, the dynamics studied here are not fueled by time progression and the
according changes to the set of options available. For this exposition, we assume
the agent to rest in moment t0, i.e., she has not yet begun to put her plans into
action. Even before beginning to act, the agent might receive epistemic updates
that change her perception of available future courses of events (van Ditmarsch
et al., 2008; Baltag et al., 1998). Let us stipulate that this information is
purely descriptive: the agent does not receive any information that leads her
to adapt or discard any basic oughts. Rather, updates may only concern further
available courses of events she had not yet considered, or that certain options
she had considered are, in fact, not available. Crucially, leaving the set of basic
oughts intact does not entail that the agent’s set of goals remains unchanged.
Which of the agent’s basic oughts translate into goals precisely depends upon
whether they are satisfiable in a given situation and, more general, which sets
of basic oughts are jointly satisfiable. In the following, we provide a dynamic
account of how an agent’s goals and derived oughts change when the available
courses of events do. Let us illustrate this with the following example, which
brings together our previous Examples 3.3 and 3.4:

Example 8.1 Suppose that I ought to repay my friend Ann 10 euro today
(basic ought), and that is a goal in my plan. I start to plan my day accordingly.
I believe I can get to Ann’s house only by bus or car, so it follows that I ought
to take the bus or the car (derived ought). Moreover, since my money is scarce,
it follows that I ought not go to the movies today (derived ought), although
I would really like to. In fact, I have even promised my friend Barbara to go
to the movies with her (basic ought), but repaying my debt takes precedence
(priority relation). Consider the following epistemic updates.

Update 1: Suppose I learn that the car has a dead battery, and I cannot
fix the problem on time to reach Ann’s house to give her the 10 euro. So,
I conclude I ought to take the bus and replan my day accordingly.

Update 2: Suppose that later, I learn that I can simply walk to Ann’s (her
place is unexpectedly quite close). Hence, now there are again two ways
in which I can reach her house: by walking or by bus. I conclude it’s no
longer true that I ought to take the bus.

Update 3: Finally, suppose that I find some extra money at home: It is no
longer true that I do not have enough money to repay Ann and go to the
movies. I can do both. Hence, it ceases to be true that I ought not go to
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M1

home

t0

home

car,
repay

bus,
repay

movies home home home

M2

home

t0

home

bus,
repay

movies home home

M3

home

t0

home

walk,
repay

bus,
repay

movies home home home

M4

home

t0

home

walk,
repay

bus,
repay

movies home home movies homemovies

Fig. 2. Four stages of planning about going to the movies and repaying money,
indicated by the atoms repay and movies. In all Models we have F repay �O Fmovies

and NO = {(JF repayKt0 , F repay), (JFmoviesKt0 , Fmovies)}. Bold lines denote each
model’s admissible subtree.

the movies. In fact, as I had promised my friend Barbara to accompany
her, it now follows that I entertain the goal of going to the movies.

Figure 2 illustrates this situation: The top left corner shows the initial tree,
the top right corner the tree after learning that the car’s battery is dead. The
results of the following two updates are depicted in the bottom row.

Let us make things formal. In this section, all trees are assumed discrete.
More precisely we assume that — (in line with much work in computer science,
e.g. Ciuni and Zanardo, 2010) — every history is isomorphic to the natural
numbers, i.e., it can be written as h = t0 �T t1 �T t2 �T . . ..

For a tree T = hT,�T i let �im be the immediate predecessor relation,
i.e. x �im y i↵ x �T y and there is no z 2 T with x �T z �T y. Note that
�T and �im are in a tight relationship. As just shown, �im is definable from
�T . Under our assumption that every history is isomorphic to the natural
numbers, the converse is also true: �T is the transitive closure of �im. Hence,
providing an enkratic model M = hT, t0, v,No,�Oi is equivalent to providing
an extended enkratic model M = hT, t0, v,No,�O,�imi that includes the
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relation �im. We will make use of this property later. To technically define the
dynamics of models, we refer to the concept of product updates with postcon-
ditions, see van Ditmarsch et al. (2008); Baltag et al. (1998) for some technical
background.

Definition 8.2 A (practical) update model E = hS, s0, Rims, pre, posti
consists of a set of states S with s0 2 S, a relation Rims ✓ S ⇥ S, and maps
pre : S ! L0 and post : S ! P(At⇥ {>,?}) such that (p,>) 2 post(s) )
(p,?) 62 post(s).

The attribute practical refers to the fact that update models do not introduce or
revoke any basic oughts the agents is exposed to. Rather these models merely
change the tree of possible future histories. Intuitively, S is a set of possible
states with a temporal relation Rims on it, similar to the relation �im on T .
Each possible state or event s in S can match and modify moments t in T .
However, the matching might be subjected to additional conditions to be met
by t. These conditions are recorded in pre(s). Finally, a state of the update
model might prescribe a change to atomic valuation at moment t. This change
is represented by the postcondition post(s), marking when a valuation should
be forced true (i.e. (p,>) 2 post(s)) or false (i.e. (p,?) 2 post(s).

For the present purpose, we make two additional assumptions on the update
model. First, we demand the transitive closure R of Rims to be a discrete tree
order on S with root s0 such that Rims is the immediate predecessor relation
of R. Second, we require that for any s 2 S the set {¬pre(t) | sRimst} is
⇤temp inconsistent. In other words: For any formula  2 L0 that is not a
⇤temp contradiction, there is some successor t of s such that pre(t) is logically
compatible with  .

The second of the above assumptions, that for any s 2 S the set {¬pre(t) |
sRimst} is ⇤temp has to be inconsistent, is non-standard. In fact, this assump-
tion precludes classic approaches to public announcements or, more generally,
the deletion of possible worlds. The condition is needed to ensure that the
non-terminality axiom, DG continues to hold in the updated model. As will
become clear in the formal treatment of Example 8.1, this restriction is far less
severe than it may seem at first sight. Briefly, many cases of deletion can be
mimicked by postconditions, adequately transforming superfluous worlds.

Definition 8.3 Let M = hT, t0, v,No,�O,�imi be an extended enkratic
model and E = hS, s0, Rims, pre, posti be a practical update model. The prod-
uct update of M with E , denoted by M⌦ E , is the extended enkratic model
hhT ⌦ S,�0

T i, (t0, s0), v0, N 0
o,�0

O�0
imi defined as follows

• T ⌦ S = {(t, s) 2 T ⇥ S|M, t ✏ pre(s)}
• Define a relation �0

im on T ⌦S as (t, s) �0
im (t, s0) i↵ t �im t0 and sRimss0.

The relation �0
T is then the transitive closure of �0

im

• The valuation v0 : At ! P(T ⌦ S) is defined by (t, s) 2 v0(p) if either
i) (p,>) 2 post(s) or
ii) t 2 v(p) and (p,?) 62 post(s).
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• (J'K(t0,s0)M⌦E ,') 2 NM⌦E
O i↵ (J'Kt0M,') 2 NM

O .

• �M⌦E
O =�M

O .

To begin with, we note that M⌦ E is indeed an enkratic model. The proof of
the following lemma can be found in the appendix, along with all other proofs
of this section.

Lemma 8.4 Let M be an extended enkratic model and E a practical up-
date model. Then hhT ⌦S,�0

T i, (t0, s0), v0, N 0
o,�0

O�0
imi is an extended discrete

enkratic model

To demonstrate the versatility of this approach, we show how all three updating
steps in Example 8.1 can be represented with update models. The first update
model E1 in Figure 3 corresponds to learning that the car is not available.
Note that by the second additional assumption on update models, the set
{¬pre(s0) | sRimss0} has to be inconsistent for any s 2 S. We hence cannot
simply delete the car worlds, but need to replace going by car with something
else, in this case going by bus. The next update model E2 corresponds to
learning that I could walk to my friend’s house. Here, a copy of the going-
by-bus world is transformed into a walking-world. Finally, E3 corresponds to
learning that I have su�cient money to see the movies even after repaying my
friend.

The three update models displayed in Figure 3 generate the sequence of
models M1,M2,M3,M4 depicted in Figure 2. More precisely, we have that
M2 ⌦ E2 = M3 and M3 ⌦ E3 = M4. For the transition from M1 to M2

this is not fully true: M1 ⌦ E1 is not the same as M2, since the former has
two duplicate branches of going by bus. However, as M2 can be gained from
M1 ⌦ E1 by removing one of these duplicate branch, both models are logically
equivalent.

8.1 Back to Challenge III: Dynamic Conditions

Generalizing from the previous examples, we show several general results that
illustrate the complex relationship between updates, goals and derived oughts.
Practical update models, despite not changing the set of basic oughts an agent
is exposed to, can have intricate and non-monotonic e↵ects on the agent’s goals
or derived oughts. We show that the agent’s set of goals need not necessarily
grow when her available options grow, and it need not shrink if her options
shrink.

To formulate the following results, let Hist(T ) denote the set of histories
of a tree T . For a given situation M, we call practical update model E a
restriction if Hist(M ⌦ E) ⇢ Hist(M) and an expansion if Hist(M) ⇢
Hist(M⌦ E). Note that the first update in Example 8.1 is a restriction, while
the second and third update exemplify expansions. We show two structural
results about restrictions and expansions and how these impact the agent’s
goals. To show these results, we first introduce some notation. In the rest
of this section, nM

G denotes the goal formulas an agent pursues in model M.
Formally nG = {' | M, t0 ✏ Goal'}.
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E1

post : ;
pre : >

s0

post : ¬car, bus
pre : car

post : ;
pre : >

post : ;
pre : ¬car

post : ;
pre : >

E2
post : ;
pre : >

s0

post : ;
pre : >

post : ;
pre : >

post : ¬bus,walk
pre : bus

post : ;
pre : >

E3

post : ;
pre : >

s0

post : ;
pre : home

post : ;
pre : >

post : ;
pre : bus _ walk

post : ;
pre : >

post : movies,¬home

pre : >

Fig. 3. Practical update models corresponding to the three updating steps from
Example 8.1

Lemma 8.5 Let M be an enkratic model where for each (J'Kt0 ,') and
(J Kt0 , ) in NO with  �O ' it holds that  2 nM

G whenever ' 2 nM
G . Let E

be an expansion of M. Then nM
G ✓ nM⌦E

G .

Lemma 8.5 identifies a condition under which the agent’s set of goals increases
if new options become available to her. This additional condition is crucial. In
general, an agent might drop some of her goals when new options become avail-
able. The following example provides an enkratic model M and an expansion
E of M such that nM

G 6✓ nM⌦E
G

Example 8.6 Consider the enkratic models M, M0 displayed in Figure 4.
In both models we set NO = {(JFpKt0 , Fp), (JFqKt0 , Fq}), (JGrKt0 , Gr}) and
Fp �O Fq �O Gr. Clearly, Hist(M) ✓ Hist(M0) and there is an update
model E such that M0 = M ⌦ E . Hence M0 is an expansion of M. In M
we have M, t0 ✏ GoalFp and M, t0 ✏ GoalGr but M, t0 6✏ GoalFq. In the
expansion M0, on the other hand, we have M0, t00 ✏ GoalFp ^ GoalFq but
M0, t00 6✏ GoalGr. Hence nM

G 6✓ nM⌦E
G .

Next, we turn to restrictions. Here, we show that an agent’s goal set cannot
grow as some of her options are removed.

Lemma 8.7 Let M be an enkratic model and let M ⌦ E be a restriction of
M. Then nM

G 6⇢ nM⌦E
G .

This does not imply that a restriction cannot give rise to new goals. When
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Fig. 4. An expansion M0 of M that does not ✓-increase the set of Goals. Bold lines
indicate the admissible subtree.

certain goals become unreachable, other basic oughts the agent had discarded
before may move into focus. In formal terms: It is, in general, not true that
nM⌦E
G ✓ nM

G . This is the subject of the following example.

Example 8.8 We use the same construction as in Example 8.6. Again, con-
sider the enkratic models M, M0 displayed in Figure 4. Again, we set
Fp �O Fq �O Gr and NO = {(JFpKt0 , Fp), (JFqKt0 , Fq}), (JGrKt0 , Gr}) in
both models. Evidently, Hist(M) ⇢ Hist(M0) and there is an practical up-
date model E such that M is equivalent to M0 ⌦ E . Hence M is a restriction
of M0. Then the same argument as above shows that nM0⌦E

G 6✓ nM0

G .

The two examples above illustrate that purely practical updates can have
complex and non-monotonous e↵ects on the agents’ goals or derived oughts. In
particular, even practical updates merely expanding the set of available histo-
ries may trigger the agent to drop certain goals of hers. Partially, such phenom-
ena are due to the exact choice of updating rule. In the present framework, the
agent calculates her set of goals from scratch after each update, picking as the
new goal set the maximally consistent subset of basic oughts that is maximal
in the lexicographic order induced by �O.

An alternative updating policy might opt for minimal changes instead,
adopting as the updated set of goals some maximally consistent subset that
di↵ers minimally from the goal set the agent pursued before the update. While
immune to the non-monotonicity described above, such minimal change rules
may trigger a di↵erent type of non-conservativeness. Take for instance a two
step update where an agent is first informed that some history h of a given
enkratic tree model M is not available, followed by a second update indicating
that the first information was wrong and h is, in fact available. After executing
both updates, the tree of available options is exactly as it was in the starting
model M. With the original updating policy described above, the set of goals
after both updates is also the same as the initial goal set. However, this would,
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in general, cease to hold if we followed a minimal change rule instead. 20 We
take this to illustrate that the existence of complex interaction patterns be-
tween changes of available histories and the set of goals pursued does not hinge
on the exact updating policy, but is a general fact of planning when exposed
to possibly incompatible sets of basic oughts.

9 Conclusion and Open Ends

In this paper we pursued two aims: Analyzing the logical structure of enkra-
sia, and addressing some of the implications enkrasia has, in combination
with certain other principles of practical rationality, for deontic logic.

As for the first aim, we have argued that enkrasia is a principle of bounded
validity. Goals are subjected to two requirements of internal and strong
consistency which basic oughts are not. Both of these conditions set bound-
aries for the translation of basic oughts into goals. enkrasia, then, is only
valid as far as it does not conflict with either requirement of consistency.

In relation to the second aim in this paper, we have elaborated on the
distinction between basic and derived oughts. This distinction allows us to
represent and indeed validate a plausible reading of practical inference without
generating an unrestricted validity of deontic closure. In fact, by restricting
the conclusions of deontic closure to derived oughts, many of the paradoxical
implications usually associated with deontic closure no longer obtain. Di↵er-
ences between basic and derived oughts surface, as shown, in their interaction
with goals and their kinematics within a dynamical logical framework.

Related approaches. To the best of our knowledge, enkrasia has not been
previously investigated explicitly from a logical perspective. There are, how-
ever, a variety of logical frameworks that deal with notions pertaining to prac-
tical rationality. We point to some of these. The analysis presented here is
linked to the logical tradition of interpreting intentions according to Bratman’s
(1987) planning theory. Related works —mainly focusing on normal modal
logic— include Cohen and Levesque (1990) and Lorini and Herzig (2008). The
latter paper also discusses practical inference, though in the context of forming
instrumental intentions rather than derived oughts.

For what concerns the dynamics of intentions and plans, related work in-
cludes van der Hoek et al. (2007), with a focus on the operation of deleting
plans. A second reference is Icard et al. (2010), who provide an account of
intention revision based on AGM theory. Further complementary work in-

20To see that this holds true for any minimal change updating rule, consider a enkratic
model M consisting of three branches f, g and h. Moreover, assume NO to contain three
basic oughts O1 - O3 which are satisfied in the subtrees {f, g}, {f, h} and {g, h} respectively.
Maximally consistent subsets hence are {O1, O2}, {O1, O3} and {O2, O3}. Assume wlog that
{O1, O2} is adopted as set of goals in M. After removing branch f , this set is not consistent
anymore, now only {O1, O3} and {O2, O3} are maximally consistent. One of these is selected
as new set of goals, wlog {O1, O3}. Since {O1, O3} remains maximally consistent after adding
f again, any minimal change rule must retain it as set of goals. In particular, the set of goals
after removing and re-adding f is di↵erent from before.
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cludes Craven and Sergot’s (2008) account of permitted and obligatory actions
within transition systems, and Broersen et al.’s (2001) syntactic, default-based
approach on conflicts between beliefs, obligations, intentions and desires.

While various frameworks address the relationship between obligations,
plans and intentions, combinability across approaches is sometimes hampered
by the fact that these may refer to di↵erent things. Consider, for instance,
Broersen et al.’s 2001 BOID framework on beliefs, obligations, intentions and
desires mentioned above. BOID distinguishes, inter alia, between obligations
(be they believed by the agent or not) and intentions, denoting actions the
agent plans on doing. In the present framework, in contrast, basic oughts are
assumed believed and accepted by the agent. Goals in a plan, moreover, cor-
respond to basic oughts the agent decided to pursue. These form a category
between BOID’s obligations and intentions.

Future directions. The present approach fits in with a larger project on the
logic of oughts in the context of practical rationality. The analysis and the
framework presented here can be extended in di↵erent directions. We mention
two.

One possible extension of our framework pertains to the relation between
enkrasia and permissions. We have seen that the relation between oughts
and goals is not unidirectional. Oughts translate into goals, but also further,
derived oughts can be generated from a given set of goals. However, it seems
that not only oughts, but also permissions can be derived from what the agent is
committed to bring about. The admissible subtree, denoting the intersection of
all goals pursued by the agent, can be thought of as a weakest permission, i.e., as
the largest subtree the agent is permitted to arrive in, given her commitments.
Naturally, stronger permissions may also hold, permitting the agent to arrive
in any subtree of the admissible tree. A classic reference on this is Anglberger
et al. (2015).

A second possible extension relates to the way in which possible future
courses of events are represented. In the current framework we use a tree-
structure to represent the agent’s choices options among future unfoldings of
events. This picture can be refined in various ways. We may, for instance,
restrict the agent’s ability to fully select the future course of actions. That is,
agents may no longer be able to pick a specific branch, but merely to choose
some subtree to stay within. Conceptually, this might require a refinement
of the principle of strong concistency, e.g., by demanding that if Goal'
then the agent believes she has an available choice option that guarantees '.
Formally, this would amount to having equivalence classes of histories (rep-
resenting choice uncertainty) paired with a quantification over such classes.
Similar topics have been investigated by Horty (2001) and Ciuni and Zanardo
(2010). The results presented in these works could form a fruitful starting point
for expanding the logic of enkrasia.
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Appendix: Proofs

Before we can prove Theorem 7.5, we need the following auxiliary lemma:

Lemma .1 Assume ⇤ ✓ L2 is maximally ⇤Enkr consistent. Let ⇤D = {' 2
L1 | D' 2 ⇤}, let ⇤¬D = {' 2 L1 | ¬D' 2 ⇤} and let ⇤lit ✓ ⇤ be the set
of all literals, i.e. atoms and negated atoms, occurring in ⇤. Then for every
 2 ⇤¬D, there is a linear 21 tree H¬ = hh¬ ,�Hi with root t¬ such that
H¬ , t¬ ✏ ¬ and H¬ , t¬ ✏ ' for every ' 2 ⇤D [ ⇤lit.

Proof. Let � 2 ⇤¬D, we will construct the desired linear tree H¬� = hh¬�,�H
i. By axioms KD and DD, the set ⇤D [ {¬�} is ⇤temp consistent. Since all
' 2 ⇤D [ {¬�} are future looking, i.e. every atom is in the scope of a modal
operator, also ⇤D [ {¬�}[⇤lit is ⇤temp consistent. We can hence expand it to
a maximally ⇤temp consistent subset � ✓ L0. The rest of the proof proceeds
by a classic bulldozing argument. For the sake of completeness, we hint at the
details.

Let M = hW,Ri be the ⇤temp canonical model over L0. That is, W is the
set of all maximally ⇤temp consistent subsets of L0 and ⇥R⌃ i↵ F' 2 ⇥ for all
' 2 L0 with ' 2 ⌃. Let H = {⌃ 2 M | �R⌃}. We show that R is transitive
and complete on H. Transitivity follows from the 4 axiom. For completeness
let ⇥ 6= ⌃ 2 H, wlog ⇥,⌃ 6= �. We have to show ⇥R⌃ or ⌃R⇥.

Pick enumerations '⇥
0 ,'

⇥
1 . . . of ⇥ and '⌃

0 ,'
⌃
1 . . . of ⌃. For i 2 ! let

 ⇤
i =

Vi
j=1 '

⇤
j for ⇤ 2 {⇥,⌃}. Note that since ⇥ 6= ⌃, there are j, k � 0 such

that '⇥
j = ¬'⌃

k . Letting i0 = max(j, k) we have that `⇤temp ¬( ⇥
i ^  ⌃

i ) for

all i > i0. As ⇥,⌃ are maximally consistent we get  ⇥
i 2 ⇥, ⌃

i 2 ⌃ for all
i 2 !.

By construction, we have �R⇥ and �R⌃. The Truth Lemma then implies
that F ⇤

i 2 � for ⇤ 2 {⇥,⌃} and all i 2 !. Hence, we have for all i that
F ⇥

i ^F ⌃
i 2 �. By L this implies that F ( ⇥

i ^ ⌃
i )_F ( ⇥

i ^F ⌃
i )_F ( ⌃

i ^
F ⇥

i ) 2 �. In particular � contains either F ( ⇥
i ^  ⌃

i ) for infinitely many i,
F ( ⇥

i ^F ⌃
i ) for infinitely many indices i or F ( ⌃

i ^ ⇥
i ) for infinitely many i.

Since `⇤temp ¬( ⇥
i ^F ⇥

i ) for all but finitely many i, the first case is impossible.
We treat the case where � contains F ( ⇥

i ^ F ⌃
i ) for infinitely many i, the

other case being similar. We will show that F ⌃
i 2 ⇥ for all i 2 !. By KG

and the construction of the  ⌃
i this entails that F' 2 ⇥ for all ' 2 ⌃, which,

together with the definition of R implies that ⇥R⌃.
To see that F ⌃

i 2 ⇥ for all i 2 ! assume for a contradiction that this
is false, i.e. that there is some im with F ⌃

im 62 ⇥ By maximal consistency,
this implies that ¬F ⌃

im 2 ⇥. Hence, there is some  ⇥
j 2 ⇥ with `⇤temp

¬( ⇥
j ^ F ⌃

im). By construction of the  j , this implies `⇤temp ¬( ⇥
j0 ^ F ⌃

j0)

for all j0 > max(im, j). In particular, since � contains F ( ⇥
i ^ F ⌃

i ) for
infinitely many i, there is some j0 > max(im, j) with F ( ⇥

j0 ^ F ⌃
j0) 2 � but

`⇤temp ¬( ⇥
j0 ^F ⌃

j0). This, in connection with DG contradicts the consistency

21 I.e. a tree where �H is a linear order.
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of �. Hence the assumption was false and we obtain that F ⌃
i 2 ⇥ for all

i 2 !.
To finish the proof, we need to ensure that R is a linear order on H. This is,

in general, not true. However, by a classic bulldozing argument (cf. Venema,
2001), we can transform H into a linearly ordered tree , H = hh,�Hi with �H
minimal element � such that H,� ✏ ' , ' 2 � Renaming � to t¬�, h to h¬�
and H to H¬� finishes the proof. 2

.
Now, we can finally show Theorem 7.5. The completeness direction proceeds
by constructing a special tree model T , with the property that for each
(J'Kt0 ') 2 NO either J'Kt0 = T or J'Kt0 = ;. Consequently, it will hold
that Tadm = T . The main task of the construction, hence is to ensure that
the histories of T are such that T ✓ J'Kt0 , D' 2 ⇤. The corresponding
construction bears some resemblance to the completeness proof for ATL
(Goranko and van Drimmelen, 2006).

Proof of Theorem 7.5. Soundness is trivial. For completeness, we show that
every maximally ⇤Enkr consistent subset ⇤ of L2 is satisfiable in an enkratic
model. Let ⇤D = {' 2 L1 | D' 2 ⇤}, let ⇤¬D = {' 2 L1 | ¬D' 2 ⇤} and let
⇤lit ✓ ⇤ be the set of all literals, i.e. atoms and negated atoms, occuring in
⇤. Using Lemma .1, we pick linear trees H¬ = hh¬ ,�Hi with root t¬ for
each  2 ⇤¬D as above. Note that all t¬ share the same atomic valuation, as
this is completely determined by ⇤lit. Moreover, note that ¬D? 2 ⇤ by DD.
Hence ? 2 ⇤¬D and thus the set of linear trees picked is non-empty.

We have to construct an enkratic model M = hT , t0, v,No,�Oi. As tree T
we take the union of the H¬ where we identify all t¬ . Formally, for a linear
tree H = hh,�Hi let T>

H be the set of all moments but the first of H. Let

T = {t0} [
[

 2B

T>
H¬ 

and �T the inherited tree-order, making t0 the root. Finally, the valuation v
is defined by

t 2 v(p) i↵

(
t = t0 and p 2 ⇤
or t 2 T>

H¬ 
and t 2 vH¬ (p).

Finally, we define NO by (J'Kt0 ,') 2 NO i↵ O' 2 ⇤. Moreover, we pick an
arbitrary well-founded ordering �O on {' | (J'Kt0 ,') 2 NO}.

For the completeness argument, we begin with some observations about
the root t0 of this tree. First we note that for (J'Kt0 ,') 2 NO(t0) we have
J'Kt0 = T if Goal' 2 ⇤ and J'Kt0 = ; else. In the former case, we have
D' 2 ⇤ by GD. By construction, this implies that every H¬ and hence every
branch h/t0 of T satisfies h/t0 ✏ ', i.e. J'Kt0 = T which is what had to be
shown. In the other case, Goal' 62 ⇤, we have, by Max, that D¬' 2 ⇤. Again
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by construction, every branch h/t0 of T satisfies h/t0 ✏ ¬', i.e. J'Kt0 = ;.
The last two observations imply that

NG = {J'Kt0 | O' 2 ⇤, Goal' 2 ⇤}. (.1)

In particular, byGD, NG(t0) = {T } if there is someGoal 2 ⇤ andNG(t0) = ;
else. In either case we haveeX2NG(t0)

X = T .
Now we can show that our model is as desired, i.e. M, t0 ✏ ' i↵ ' 2 ⇤. The

argument is an induction over the complexity of '. As induction base, we show
the claim for ' an atom or of the form O , Goal or D for some  2 L1. In
the induction step we then show that if the claim holds for '1,'2 2 L2 then
also for ¬'1 and '1 ^'2. This induction step is trivial. We only need to show
the claim for the induction base.

If ' is atomic, the claim holds by definition of the valuation on t0. If ' is
O for some  2 L1, this follows immediately from the construction of NO. If
' is Goal for  2 L1 the claim follows immediately from Equation .1.

The only non-trivial case is when ' is of the form D for  2 L1. For
the left to right direction assume M, t0 ✏ D . We have to show D 2 ⇤.
First, note that M, t0 ✏ D implies that

T
X2NG

X ✓ J Kt0 . Since for each
X 2 NG holds that X = {T } or X = ;, this implies that T ✓ J Kt0 . Assume
for a contradiction that D 62 ⇤. By maximality, this implies ¬D 2 ⇤. By
construction, there is a branch h¬ of T with T , t0/h¬ ✏ ¬ . In particular,
T 6✓ J Kt0 which is a contradiction. Hence the assumption was false and
D 2 ⇤. For the right to left direction assume D 2 ⇤. Recall that by
construction, every branch h of M satisfies M, t0/h ✏  . In particularT

X2NG
X ✓ J Kt0 which implies that M, t0 ✏ D . 2

Proof of Theorem 7.7. The proof borrows heavily from the proof of Theorem
7.5. We only highlight the relevant di↵erences. Soundness, again, is trivial. For
weak completeness, we have to show that whenever there is some '̃ 2 L2 with
6`¬⇤Enkr,2 ¬'̃, there is some enkratic model M, w with M, w ✏ '̃. Let such
'̃ be given. Without loss of generality, we can assume that '̃ is in disjunctive
normal form, i.e

'̃ =
n_

i=1

kî

j=1

�i,j

where each �i either is an atom, a negated atom or of the form X' or ¬X'
for X 2 {O,Goal,D,2} and ' 2 L1. By Max we have `¬⇤Enkr,2 O' $
(O' ^Goal') _ (O' ^D¬'). We can hence assume without loss of generality

that every disjunct
Vki

j=1 �i,j of ' has the property that for each �i,j of the
form O either Goal or D¬ appears as some of the �i,j0 with j0  ki.
Likewise, as `¬⇤Enkr,2 ¬2' $ (¬2' ^ ¬D') _ (¬2' ^ D'), we can assume
that for each �i,j of the form ¬2 either ¬D or D appears as some of the
�i,j0 with j0  ki. Moreover, by GO, we can assume that for each �i,j of the
form Goal also O appears as some of the �i,j0 with j0  ki Finally, by DD,
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we can assume that for each i  n ¬D? appears as some �i,j0 with j0  ki.

To show that '̃ =
Wn

i=1

Vki

j=j �i is satisfiable in an enkratic model, it su�ces
to show that one of its disjuncts is satisfiable in an enkratic model. Hence, it
su�ces to show the claim for i = 1, that is for '̃ of the form

Vk
j=1 �j . Let such

a ' be given and let X = {�1, . . .�k}.
In a similar fashion as in Theorem 7.5, let ⇤D = {⇢ 2 L1|D⇢ 2 X}, let

⇤2 = {⇢ 2 L1|2⇢ 2 X}, let ⇤¬D = {⇢ 2 L1|¬D⇢ 2 X} and let ⇤At =
{� 2 X|� = p or � = ¬p}. Note that ⇤¬D 6= ; as ? 2 ⇤¬D. As At is
infinite, we can pick an atom p0 that does not occur in any of the formulas
in X. Pick a valuation ⇤lit extending ⇤At, i.e. some maximally consistent
⇤lit ✓ {p,¬p | p 2 At} with ⇤lit ◆ ⇤At such that ¬p0 2 ⇤lit. By a slight
adaptation of Lemma .1, there are linear trees H¬ = hh¬ ,�Hi with root
t¬ for each  2 ⇤¬D such that H¬ , t¬ ✏ ¬ and H¬ , t¬ ✏ � for every
� 2 ⇤D [ ⇤2 [ ⇤lit. Moreover let ⇤⌃/D = {¬⇢ 2 L1|¬2⇢ 2 X and D⇢ 2 X}
the set of formulas that are possible without being a derived goal. By another
slight adaptation of Lemma .1, there are linear trees H0

⇢ = hh0
⇢,�0

Hi with root

t0⇢ for each ⇢ 2 ⇤⌃/D such that H0
⇢, t

0
⇢ ✏ ⇢ and H0

⇢, t
0
⇢ ✏ � for every � 2 ⇤2[⇤lit.

Before constructing the desired enkratic model, we show the following claim:
There is a formulas ⇢0 such that H¬ , t¬ ✏ ⇢0 for all  2 ⇤¬D, but H0

 , t
0
 ✏

¬⇢0 for all  2 ⇤⌃/D. To see this, note that by definition of sets ⇤D and ⇤⌃/D,
every member of ⇤⌃/D is of the form ¬� with � 2 ⇤D. Let ⇢0 =

V
¬�2⇤⌃/D �.

We hence have that H¬ , t¬ ✏ ⇢0 for all  2 ⇤¬D, but H0
 , t

0
 ✏ ¬⇢0 for all

 2 ⇤⌃/D i.e. ⇢0 has the desired property.
Now, we construct a enkratic model M = hT , t0, v,NO,�Oi satisfying '̃ as

follows. We pick linear trees H¬ for each  2 ⇤D and H0
 for all  2 ⇤⌃/D as

above. As p0 does not occur in any of the formulas in X and ¬p0 2 ⇤lit we can
assume wlog that p0 is globally false on all H¬ and H0

 . With these we define
a tree T as in the proof of Theorem 7.5. By the previous claim, there is formula
⇢0 such that H¬ , t¬ ✏ ⇢0 for all  2 ⇤¬D, but H0

 , t
0
 ✏ ¬⇢0 for all  2 ⇤⌃/D.

Since p0 is false everywhere, ⇢ = ⇢0 _ Gp0 has the same property. Moreover,
since p0 does not occur in X, we also have that O⇢,¬O⇢, Goal⇢,¬Goal⇢ are
all not contained in X. Define the neighborhood NO by (J'Kt0 ,') 2 NO i↵
O' 2 X or ' = ⇢. Finally, as priority relation �O we pick any well-founded
ordering on {' | O' 2 X} [ {⇢} that has ⇢ as maximal element.

We can now show that M, t0 ✏ '̃. Since '̃ =
V
 2X  , it su�ces to show

that M, t0 ✏  for all  2 X . If  is an atom or negated atom, this follows
immediately from the construction. The same holds if  is of the form O',¬O'
or 2'. If  is of the form ¬2' we have by our assumption that either D' 2 X
or ¬D' 2 X. In the first case ¬' 2 ⇤⌃/D and H0

¬', t
0
¬' ✏ ¬' and hence

M, t0 6✏ 2'. In the second case ' 2 ⇤¬D and H¬', t¬' ✏ ¬' witnessing again
that M, t0 6✏ 2'.

For the remaining cases we define subtrees S and S 0 of T by
S =

S{H¬ |  2 ⇤¬D} and S 0 =
S{H0

 |  2 ⇤⌃/D} Since for each
O 2 X also Goal 2 X or D¬ 2 X, we can use the same argument as
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in the previous theorem to show that for O 2 X, we have that S ✓ J Kt0
if Goal 2 X and J Kt0 ✓ S0 if D¬ 2 X. Since J⇢Kt0 = S, and ⇢ is
the �O maximal element of {' | O' 2 X} [ {⇢}, we get that J'Kt0 with
O' 2 X can only be in NG if J'Kt0 6✓ S0, i.e. if Goal' 2 X. Moreover, since
S ✓ J'Kt0 whenever Goal' 2 X, we get that NG = {J'Kt0 | O', Goal' 2 X}.
By our assumption that O' 2 X whenever Goal' 2 X, this simplifies to
NG = {J'Kt0 | Goal' 2 X} and hence eJ'Kt02NG

J'Kt0 = S. From there,
the same argument as in the previous theorem implies that M, t0 ✏  if
 2 X is of the form Goal' or D'. If  is of the form ¬D', note that
there is, by construction, a branch h¬' with M, t0/h¬' ✏ ¬' Since h¬' ✓ S
and eJ'Kt02NG

J'Kt0 = S this implies M, t0 ✏ ¬D'. Finally, if  is of the
form ¬Goal', we need to distinguish whether O' 2 X or not. If not, we
have by construction, that (J'Kt0 ,') 62 NO which immediately implies that
M, t0 ✏ ¬Goal'. For the case that O' 2 X, we have by construction that also
D¬' 2 X. For this case have shown above that J'Kt0 ✓ S0, which implies
J'Kt0 62 NG. Again, we get M, t0 ✏ ¬Goal' as desired. 2

Proof of Lemma 8.4. We begin with showing that�0
T is a tree-order on T⌦S.

Transitivity is immediate, as �0
T is transitively closed. For irreflexivity assume

the contrary, i.e. that is assume that there is some (t0, s0) with (t0, s0) �0
T (t0, s0).

Hence there are (t0, s0) �0
im (t2, s2) �0

im . . . �0
im (tn, sn) = (t0, s0). By definition

of M ⌦ E this entails that t0 = t1 �im t2 . . . �im tn = t0. In particular we get
t0 �T t0, as �T is the transitive closure of �im. But this contradicts the fact
that �T is irreflexive.

Finally for inverse linearity, let (t, s) 2 T ⌦ S. We need to show that

P = {(t0, s0) 2 T ⌦ S|(t0, s0) �0
T (t, s)}

is linearly ordered by �0
T . Let (t

0, s0), (t̃, s̃) 2 P be given. We have to show that
(t0, s0) �0

T (t̃, s̃) or (t̃, s̃) �0
T (t0, s0). By assumption, we have that t0, t̃ �T t.

By construction and the assumption that �T has the order type of the natural
numbers, there is n0 2 ! such that (t0, s0) = (t00, s

0
0) �0

T . . . �0
T (t0n0 , s0n0) = (t, s)

with t00 �im . . . �im tn0 and s00Rims . . . Rimssn0 . Likewise, there is ñ 2 ! such
that (t̃, s̃) = (t̃0, s̃0) �0

T . . . �0
T (t̃ñ, s̃ñ) = (t, s) with t̃0 �im . . . �im t̃ñ

and s̃0Rims . . . Rimss̃ñ. By definition of a practical update model, Rims is a
unique predecessor relation, i.e. xRimsz and yRimsz implies x = y. We hence
have that s0n0�1 = s̃ñ�1, s0n0�2 = s̃ñ�2 . . .. The same reasoning yields that
t0n0�1 = t̃ñ�1, t0n0�2 = t̃ñ�2 . . .. Since (T,�T ) is a tree, we have that t0 �T t̃,
t̃ �T t0 or t0 = t̃. Without loss of generality, we assume the first, the other
cases being similar. Since t0 �T t̃, we have n0 > ñ and hence t̃ = t0n0�ñ. By the
above, this implies that (t̃, s̃) = (t0n0�ñ, s

0
n0�ñ) and hence (t0, s0) �0

T (t̃, s̃).
Finally, we have to show that the tree order �0

T is serial. To this end
let (t, s) 2 T ⌦ S. We have to show that there is some (t0, s0) 2 T ⌦ S with
(t, s) �0

T (t0, s0). Note that by seriality of T , there is some t0 with t �T t0.
By our discreteness assumption, we can pick t0 such that t �im t0. Next, we
claim that there is some s0 2 S with sRimss0 and M, t0 ✏ pre(s0). Note that
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this claim implies that (t, s) �0
T (t0, s0), finishing the proof. So let us show

the claim. Assume not. That is, assume that M, t0 6✏ pre(s0) for all s0 2 S
with sRimss0. Hence, M, t0 ✏ ¬pre(s0) for all s0 with sRimss0. This shows
that {¬pre(t) | sRimst} is consistent, contradicting the assumption that S is a
practical update model. 2

Proof of Lemma 8.5. Since M ⌦ E is an expansion of E , the set

S = {J K(t0,s0)M⌦E | J Kt0M 2 NM
G } in M ⌦ E is consistent, i.e.

T
m2X m 6= ;. By

assumption, nM
G is �O-upward closed in {' | (J'Kt0M,') 2 NM

O } and hence also
in {' | (J'Kt0M⌦E ,') 2 NM⌦E

O }. In particular, the �Lex maximally consistent

subset of {J'K(t0,s0) | (J'K(t0,s0),') 2 NM⌦E
O } contains S. This shows that

nM
G ✓ nM⌦E

G . 2

Proof of Lemma 8.7. Assume for a contradiction that nM
G ⇢ nM⌦E

G . This
implies that nM

G �M
Lex nM⌦E

G . Hence, by construction of the neighborhood
NM

G , the set {J'Kt0M | J'Kt0M⌦E 2 NM⌦E
G } must be inconsistent, i.e. there

is no history h of T such that h 2 J'Kt0M for all ' with J'Kt0M⌦E 2 NM⌦E
G .

This, however, is impossible: NM⌦E
G is by definition consistent in M ⌦ E , i.e.

there is some history h of M ⌦ E with h ✓ J'Kt0 whenever J'Kt0 2 NM⌦E
G .

Since M ⌦ E is a restriction of M, h is also a history of M, showing that
{J'KtM | J'KtM⌦E 2 NM⌦E

G } is consistent. 2
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